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Context : Efficient and secure modular operations using the
Polynomial Modular Number System

ä Side channel attacks (SCA) use the leakage of information during the
execution of a cryptographic protocol (execution time, power consumption or
electromagnetic emission) in order to totally or partially recover the secret.

ä SCA have proven to be efficient in ECC : countermeasures should be included
in the implementation of the scalar multiplication in ECC which, from a point
P over a public elliptic curve, and a private integer k, computes kP.

ä The classical double and add method is not resistant to SCA. The Montgomery
ladder and its variant are more resistant but can still be attacked.

Problematic

ä Introduce randomization at the arithmetical level.
We want to use a random representation of point P each time this point is used
during the scalar multiplication algorithm.

• to ensure the resistance to SCA and specific point attacks.

Idea
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ä The coordinates of P are represented in Polynomial Modular Number System,
known to speed up modular arithmetic

3 We use the redundancy of PMNS to randomize the coordinates.

ä We propose to randomise the scalar multiplication by the two following ways :
• Randomisation of each initial coordinate of P using a suitable conver-

sion procedure, ensuring the resistance to SCA and specific point attacks.

• Randomisation of each multiplication between two elements in PMNS
representation to be more resistant to SCA.

Approach

The set of all representations of the integer a in the PMNS B = (p, n, γ, ρ), noted
aB is defined as

A ∈ aB ⇐⇒


A(γ) ≡ a (mod p),
deg A < n,
‖A‖∞ < ρ

with ‖.‖∞ the infinity norm.
ä How to ensure that operations are stable within the system ?

Properties about the representations in PMNS
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ä Operations must be stable on the chosen system B = (p, n, γ, ρ)

Let A ≡ aB,B ≡ bB, then A.B(γ) = ab mod p.

To compute a representation (ab)B, two reductions are required :

• External reduction : A ·B might not be in B since deg(A ·B) ≥ n. The external
reduction polynomial E is used to reduce the degree.
⇒ V = A.B mod E ∈ Z[X ]

3 deg(V ) < n

• Internal reduction : V with deg(V ) < n might not be a representation of ab
(mod p) in B, if ‖V ‖∞ ≥ ρ.
⇒ S = RedCoeff(V ) ∈ Z[X ]

3 ‖S‖∞ ≤ ρ, then S = abB

Ensuring stability
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Algorithm 1 OpMod(A,B,B), Modular operation on PMNS B

Require: A,B ≡ aB, bB with B = (p, n, γ, ρ,E )
Ensure: S ≡ (a · b)B, i.e. S(γ) ≡ A(γ).B(γ) (mod p)

V ← A.B mod E
S ← RedCoeff(V) via a Babaï-like method
return S

Standard algorithm
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Summary

• A Babaï-like method for the internal reduction

• Randomisation of the input data

• How many representations ? Bound on digits ? Collisions ?

• Randomisation of the multiplication

• Complexity and perspectives
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Unlike the Montgomery-like algorithm, the Babaï-like algorithm
• does not require to maintain the elements of Z/pZ in another representation

domain,
• does not need a polynomial M with particular properties.

The representations in the PMNS system are considered as vectors.

A method without condition

The algorithm runs on the lattice LB composed of polynomials of degree at most
n − 1 with γ as root.

LB = {A(X) ∈ Z[X ], such that : deg(A) < n and A(γ) ≡ 0 mod p}.

If V (γ) ≡ U(γ) mod p, then V ≡ U mod LB
ä V − U ∈ LB

From V ∈ Zn, the Babai-like algorithm finds a vector U such that V ≡ U mod LB.
ä U ∈ V − LB := {V −W |W ∈ LB}, with ‖U‖∞ ≤ ‖V ‖∞

Using the Euclidean lattice LB associated with the PMNS B
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Figure – Reduction via Babaï in dimension 3. The selected hyperplanes are green.
Require: V ∈ Z[X ] with deg(V ) < n, B = (p, n, γ, ρ,E)
Data : B = {bi , 1 ≤ i ≤ n} the LLL-reduced base of LB

B̃ = {b̃i , 1 ≤ i ≤ n} the Gram-Schmidt base obtained from B
Ensure: r ∈ B such that ‖R‖∞ ≤ ‖V ‖∞ and r(γ) = V (γ) mod p
1: r ← v
2: for i = 1 to n do
3: c ← b< R, b̃n−i+1 > /‖b̃n−i+1‖2e
4: r ← R − c × bn−i+1

5: end for
6: return r

RedCoeff - Babaï like
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The output of the algorithm represents the same element modulo p as the
input and lies in the rectangle{∑

ai D̃i | |ai | ≤
1
2

}
.

If ρ is such that :

ρ > 1
2 2

3n−1
2 p1/n,

then the algorithm computes R such that ‖R‖∞ < ρ (i.e R ∈ B).

This lower bound does not depend on the polynomial E unlike the Montgomery-like
internal reduction.

Theorem
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z ∈ Z Z ∈ Z[X ]
chosen during the → randomPoly(z) = ‖Z‖∞ ≤ z, z ∈ N

PMNS generation process deg Z < n

We consider this function as safe.

Random polynomial generation

The integer z define the minimum number of distinct representations of any element
of Z/pZ in B.

ä There are exactly (2 z + 1)n polynomials Z as defined above.
Questions :
• What bound ρ to guarantee there are at least (2 z +1)n distinct representations

of any element of Z/pZ in the system ?
• How to use Z to reach all those representations ?

z define the number of representations for the randomization
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Let the lattice LB and its LLL-reduced base D. The randomization is based on two
random vectors :

Let V be the mask vector : n random coefficients to generate a linear combi-
nation of the elements of D

ä The resulting vector is added to the input at the beginning of the algo-
rithm to randomize computations during execution. It does not affect the
output.

Let Z be the shift vector : for each dimension of the Euclidean space, the
element in D is multiplied by the corresponding random coefficient of Z

ä Generate an additional translation during the algorithm and randomize
the output.

The randomisation of the Babaï-like method
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Algorithm 2 Conversion from classical representation to PMNS

Require: a ∈ Z/pZ and B = (p, n, γ, ρ,E )
Ensure: A ≡ aB
Data : Pi ≡ (ρi)B, for i = 0, . . . , n − 1
1: b ← (an−1, ..., a0)ρ # radix-ρ decomposition of a

2: U ←
n−1∑
i=0

bi Pi

3: A← RedCoeff(U)
4: return A

20/43



Algorithm 3 Randomised conversion from classical representation
to PMNS via Babaï
Require: a ∈ Z/pZ and B = (p, n, γ, ρ,E )
Ensure: A(γ) ≡ a (mod p)
Data : Pi ≡ (ρi)B, for i = 0, . . . , n − 1

D = {Di , 1 ≤ i ≤ n} the LLL-reduced base of LB
D̃ = {D̃i , 1 ≤ i ≤ n} the Gram-Schmidt base
v ∈ N, z ∈ N

1: V ← randomPoly(v)
2: Z← randomPoly(z)
3: b ← (an−1, ..., a0)ρ # radix-ρ decomposition of a

4: T ←
n−1∑
i=0

bi Pi

5: A← T +
n−1∑
i=0

vi Di+1

6: for i = 1 to n do
7: c ← b< A, D̃n−i+1 > /‖D̃n−i+1‖2e+ zn−i
8: A← A− c × Dn−i+1
9: end for
10: return A 21/43



Figure – Reduction via Babaï in dimension 2. The selected hyperplanes in LB are
shaded or surrounded.

Non randomized Randomized

z = 1→ shift Z = (−1, 1)

c ← b< A, D̃2 > /‖D̃2‖2e

Two executions of the Babai-like algorithm

22/43



Figure – Reduction via Babaï in dimension 2. The selected hyperplanes in LB are
shaded or surrounded.

Non randomized Randomized

z = 1→ shift Z = (−1, 1)

c ← b< A, D̃2 > /‖D̃2‖2e

Two executions of the Babai-like algorithm

23/43



Figure – Reduction via Babaï in dimension 2. The selected hyperplanes in LB are
shaded or surrounded.

Non randomized Randomized
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Figure – Reduction via Babaï in dimension 2. The selected hyperplanes in LB are
shaded or surrounded.

Non randomized Randomized

z = 1→ shift Z = (−1, 1)

‖D̃2‖2 A1 ← A− c × D2 ‖D̃2‖2

Two executions of the Babai-like algorithm
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Figure – Reduction via Babaï in dimension 2. The selected hyperplanes in LB are
shaded or surrounded.

Non randomized Randomized

z = 1→ shift Z = (−1, 1)

c ← b< A1, D̃1 > /‖D̃1‖2e

Two executions of the Babai-like algorithm
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Figure – Reduction via Babaï in dimension 2. The selected hyperplanes in LB are
shaded or surrounded.

Non randomized Randomized

z = 1→ shift Z = (−1, 1)

‖D̃2‖2 A′ ← A1 − c × D1‖D̃2‖2

Two executions of the Babai-like algorithm
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Summary

• A Babaï-like method for the internal reduction

• Randomisation of the input data

• How many representations ? Bound on digits ? Collisions ?
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Let :
• B = (p, n, γ, ρ,E) a PMNS.
• a ∈ Z/pZ
• v and z ∈ Z, the inputs of the randomPoly procedure (for the mask and the

shift polynomial).
We consider B, a, v and z as the inputs and data of Algorithm 3.

If ρ satisfies

ρ ≥
(1
2 + z

)(
2

3n−1
2 p1/n

)
,

then Algorithm 3 can generate (2 z + 1)n distinct outputs, all representing a and
belonging to the PMNS B = (p, n, γ, ρ,E).

Theorem

30/43



ä Replacing T by T + V for V ∈ L has no effect on the output.

Input T : (Ai )0≤i≤n, (ci )0≤i≤n the values of A and c before and at each step of the
loop.

Input T + Di : (A′i )0≤i≤n and (c ′i )0≤i≤n.

Here A0 = T = T + Di − Di = A′0 − Di .
By induction, for j ≤ n − i ,

< Dn−j+1,A′j−1 − Di >=< Dn−j+1,A′j−1 >

⇒ cj = c ′j

The mask vector has no effect on the output
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Then,
Aj = Aj−1 − cjDn−j+1 = A′j−1 − Di − c ′jDn−j+1 = A′j − Di .

Then, at step j = n − i + 1, we obtain

cj = < Aj−1, D̃i >

‖D̃i‖2
= < A′j−1 − Di , D̃i >

‖D̃i‖2
= < A′j−1, D̃i >

‖D̃i‖2
− 1 = c ′j − 1.

For this j, this implies

Aj = Aj−1 − cjDi

= A′j−1 − Di − (c ′j − 1)Di

= A′j−1 − c ′jDi = A′j

3 The output is identical.

The mask vector has no effect on the output

32/43



The Gram-Schmidt vectors are orthogonal, then every u ∈ Rn can be written as

u =
∑ < D̃i , u >

‖D̃i‖2
· D̃i .

At the i-th step, the algorithm removes to A the fixed vector (b< A, D̃n−i+1 >

/‖D̃n−i+1‖2c+ zn−i ) · Dn−i+1, the output lies in the rectangle{∑
ai D̃i with |ai | ≤

1
2 + z

}
,

with z the bound of the shift polynomial. Then

‖A‖2 ≤
(1
2 + z

)2
(

n∑
i=1

‖D̃i‖

)2

.

Giving a bound for ρ
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Since the base D is an LLL-reduced basis, for 1 ≤ i ≤ n, ‖D̃i‖ ≤ 2
n−i

2 ‖D̃n‖, and

‖A‖ ≤
(1
2 + z

)( n∑
i=1

2
n−i

2 ‖D̃n‖

)
,

≤
(1
2 + z

)(
2

n−1
2 ‖D̃n‖

)
.

A bound on D̃n is given by ‖D̃n‖ ≤ 2np1/n. Hence,

‖A‖∞ ≤ ‖A‖≤
(1
2 + z

)(
2

3n−1
2 p1/n

)
.

3 The bound on ρ is proved.

Giving a bound for ρ
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For the input A and shift vector Z , for i from n − 1 to 0, the i-th coordinate zi of
Z represents the additional translation −zi Di+1 performed on A.

To compute the i-th coordinate of the result, the algorithm subtracts a point in the
hyperplane of dimension i and at a distance of zi ‖D̃i+1‖ from the point b< A, D̃i+1 >

/‖D̃i+1‖2eDi+1 in the lattice.
ä the choice of one hyperplane over another induces a different result.

3 The algorithm returns distinct outputs from two distinct shift vectors.

No collision
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Algorithm 4 PMNS Multiplication via Babaï - Randomised Version
Require: B = (p, n, γ, ρ,E ) and A,B ∈ B
Ensure: R ∈ B such that R(γ) = A(γ)B(γ) mod p
Data : Pi ≡ (ρi)B, for i = 0, . . . , n − 1

D = {Di , 1 ≤ i ≤ n} the LLL-reduced base of LB
D̃ = {D̃i , 1 ≤ i ≤ n} the Gram-Schmidt base
v ∈ N, z ∈ N

1: V ← randomPoly(v)
2: Z ← randomPoly(z)

3: J ←
n−1∑
i=0

vi Di+1

4: B′ ← B + J
5: R ← A× B′ mod E
6: for i := 1 to n do
7: c ← b< R, D̃n−i+1 > /‖D̃n−i+1‖2e+ zn−i
8: R ← R − c × Dn−i+1
9: end for
10: return R

37/43



Let :
• B = (p, n, γ, ρ,E) a PMNS.
• A,B ∈ B
• v and z ∈ Z, the inputs of the randomPoly procedure (for the mask and the

shift polynomial).
We consider B, A, B, v and z as the inputs and data of Algorithm 4.

If ρ satisfies

ρ ≥
(1
2 + z

)(
2

3n−1
2 p1/n

)
,

then Algorithm 4 can generate (2 z + 1)n distinct outputs representing A(γ)B(γ)
mod p in the PMNS B = (p, n, γ, ρ,E).

Theorem
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M and A : multiplication and sum of two w -bits integers
I : division by an integer of 2w blog2(n)c bits
R : cost of one call to the randPoly function.

We also respectively denote Si
l and Si

r a left shift and a right shift of i bits.
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In classical binary representation, common countermeasures appear to be inefficient
against Goubin’s attack. It is possible to thwart this attack at the cost of an
additional ECSM which must be done in addition to the common countermeasures.

Advantages of PMNS based randomized solutions :
ä regardless the type of curve, this attack cannot be performed.

3 at least (2z +1)n distinct representatives of 0 ∈ Z/pZ which do not have
special shapes.

For z big enough, the attacker should not be able to exploit any information
to perform this attack.

3 The only randomization of the conversion process using Montgomery or
Babaï suffices to counter the Goubin’s attack even if non-randomized
multiplications are used later.

ä it operates at arithmetic level.
3 can be combined with other classical countermeasures (point blinding, scalar

blinding) to randomize P and the intermediate points.

Advantages
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ä We show for the first time how to use the redundancy of the PMNS to define
arithmetical protections against DPA attacks

ä We described how to randomize the inputs during the forward conversion to
PMNS through two methods.

ä We also gave two randomized modular multiplications in PMNS.
3 These methods can be used to apply classical countermeasures on the

elliptic curve scalar multiplication.
ä We showed that randomizing only the conversion process suffices to protect

against Goubin’s attack.

Conclusion

• These results are a first step in using randomization for arithmetic operations
in PMNS. This work opens up new perspectives in the area of countermeasures
for SCA attacks.

• A deeper study on practical efficiency and an exhaustive comparison with exis-
ting countermeasures will soon follow in order to establish the relevance of
these methods.

Perspectives
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Thank you !
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